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Abstract 
Motivation: Massive parallel phylogenetic analyses allow to reconstruct phylogenetic trees for every gene in 
genome, typically using a set of potential homologues detected by similarity search against reference databases via 
BLAST or BLAST-like algorithms. However, given that the amount of similarity hits between query sequence and 
targets is often too high,  it may be necessary to reduce number of sequences for downstream pelogenetic analyses.. 
Currently available automatic and semi-automatic methods for dataset reduction are error-prone and may depend 
on additional metadata, whereas  reduction “by hand” is labour-intensive and becomes intractable once 
phylogenetic analysis of multiple genes is to be performed. 
Results: We propose a distance-based algorithm, termed Distant Joining, for phylogenetic dataset reduction that 
does not require additional input except sequences analyzed. DJ was shown to robustly subsample a set of sequences 
with minimal loss of dataset divergence from large and complex sequence data sets. In the context of  out study, the 
underlying assumptions and limitations of different subsampling approaches are discussed, and directions for 
selection of the subsampling method to build phylogenomic pipelines are provided. 
Availability: Proof-of-concept Python implementation is available at https://github.com/SynedraAcus/sampler under 
the terms of CC-BY-4.0 license. 
Supplementary information: Supplementary data are available at Journal of Bioinformatics and Genomics online. 
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1 Introduction  
The advancement of sequencing technologies in the last 

decade allowed evolutionary biologists to work with model 
and non-model species on the genomic scale. It has now 
become possible to reconstruct a phylogenetic tree for 
every single gene in the genome of interest. Such a 
collection of trees is called phylome, and phylomic 
databases for a variety of model organisms were established 
(Huerta-Ceras et al. 2014). Phylogenetic analysis, whether 
for a single gene or within the phylomic project, starts by 
identifying the potential homologs of the gene in question 
in some large reference database (typically BLAST search 
against NCBI nr). These homologs are then aligned and 
used for the phylogenetic tree reconstruction. 

However, it may be biologically counterproductive or 
computationally intractable to use all the high-scoring 
BLAST hits for the tree reconstruction. For well-sequenced 
genes there may be tens or hundreds of thousands of 
hits.While alignments and trees on that scale have been 
built (eg SSU and LSU rRNA SILVA  (Quast et al. 2013) 
and Greengenes (DeSantis et al. 2006) databases), it 

requires both significant computational resources and 
competent specialists., On the other hand, phylomic 
pipeline should produce lots of trees in acceptable time with 
minimal human intervention. Therefore, hits of analyzed 
sequence to query database should be somehow filtered and 
the underlying sequence dataset should be subsampled prior 
to the  downstream analyses. 

Basically, the goal of subsampling is to reduce a large  
dataset to a smaller representative subset. From 
phylogenetic point of view, “original” and “subsampled” 
trees sould be generally consistent and containsimilar sets 
of clades . This formulation of a problem does not take into 
account the biological meaning of a clade. Whether 
studying the relationships of taxa or protein families, one 
need at least a single sequence representing each clade. 

Several subsampling strategies were developed to date. 
Using smaller database for similarity searches, one can 
search only a few proteomes instead of the entire nr 
database or its analogue, thus ending up with several tens of 
hits with high e-values. This approach is used by 
phylomeDB (Huerta-Ceras et al. 2012) and in other studies 
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limited to evolution of relatively small groups of species, 
e.g. genus Rickettsia (Murray et al. 2016). It certainly 
solves the problem of having too much input data, but at the 
cost of significantly reduced taxonomic coverage. The 
resulting trees will contain only the taxa whose proteomes 
were used initially, missing any homologs from outside this 
arbitrary group. HGT cases from external organisms may 
be detected, but clarification of the sequence origin will 
require additional effort; HGTs from the group to external 
organisms will not be detected. Monophyly of the group 
will not be tested, and paralogy assessment will be limited 
to only this group's evolutionary history. 

If the search is performed against the entire nr database, 
the dataset size can still be limited by taking a limited 
number of sequences with the highest similarity. This 
strategy can potentially result in bloating clades containing 
the query sequence, while the rest of the tree remains 
underrepresented or missing altogether. As a somewhat 
extreme example, consider BLAST search of A. thaliana 
RuBisCO large subunit (NR_051067.1) against NCBI nr. 
As of 2015, 71 of 100 closest hits (by identity) are eudicots, 
58 of which are family Brassicaceae. This problem may not 
be so pronounced in other cases, but the very idea of 
distance-based phylogenetics is that the more similar 
sequences are, the more likely they are to be closely related. 
Thus sampling most similar sequences is, by definition, 
sampling most closely related sequences. If the aim of the 
work is to study as diverse a collection of the gene's 
relatives as possible, this approach is counterproductive. 

The third approach is to select sequences manually. If 
the evolutionary history of the gene in question is relatively 
well-studied, it is possible to just take representatives of all 
previously described major groups and add the novel 
sequences that need to be placed. This way the dataset will 
be as good as possible given current knowledge on the 
matter, but at the cost of time spent on manual data 
curation. It can and should be done if one studies a single 
gene or a group of genes, but a phylome-scale analyses 
require reconstructing thousands of phylogenetic trees, so 
it's infeasible to have an actual human working on every 
dataset. 

In addition, prior knowledge may not be available at all. 
A significant fraction of genes even in human genome has 
unknown function: only 34 thousand proteins out of almost 
70 thousand sequences in human proteome at UniprotKB 
(The UniProt Consortium 2015; proteome up000005640) 
have at least one “molecular function” GO term assigned to 
them. The portion of unstudied genes is even higher in non-
model organisms, and their evolutionary histories have only 
been addressed in phylomic projects. 

A recent paper (Zhou et al. 2014) proposes a novel 
approach to sequence sampling, dubbed AST: Automated 
sequence-Sampling method for improving Taxonomic 
divergence of phylogenetic trees. The algorithm is designed 
in such a way that all taxa of the same rank will be 
represented by approximately equal number of sequences. 
It was shown to outperform random sampling and similarity 
sampling on a series of both real and simulated datasets and 
come close to manual sampling where the latter is 
available. 

However, its selection procedure is based on a taxonomy 
and thus makes an implicit assumption that taxonomy 
adequately describes the evolutionary history of the 
sequences in question. If the gene tree is, in fact, 
incompatible to taxa tree, the sampling will be performed 
according to the latter one, potentially disregarding entire 
paralog families or HGT descendant groups because 

sequences from the same organism have been already 
added to the dataset. AST also uses similarity to the query 
sequence to select sequences within lowest-level taxa. This 
approach only enhances the problem, giving increased 
weight to the homologs of the query and undersampling its 
paralogs, which further hampers the algorithm performance 
on paralogy-heavy datasets. 

As discussed above, existing automated sampling 
methods are prone to produce misguiding datasets in 
complex cases. There is a need for an algorithm that would 
be capable to correctly sample from an arbitrary dataset. It 
should not depend on any data that may not be available for 
some of the sequences. Unclassified sequences lacking 
source organism or genes of unknown function with no 
domains predicted should not be treated worse than well-
studied genes. We have devised an automated taxonomy-
independent distance-based sequence sampling algorithm 
that fulfills these requirements, dubbed Distant Joining, and 
developed a proof-of-concept implementation in Python. 
2 System and Methods 

The performance of distant joining algorithm and other 
sampling approaches was tested on two real datasets. For 
each of them we have defined a number of biologically 
significant clades and tested the percentage of those clades 
retained at various sampling rates. Distant Joining, AST, 
similarity sampling and random sampling were tested; 
average result of 100 replicates is reported for the latter. 

The first dataset included all the non-redundant non-
unclassified eukaryotic SSU rRNA sequences with 
sequence quality and alignment quality above 90 from 
SILVA database release 119 (Quast et al. 2013). The clades 
in this cases are genera according to SILVA taxonomy. 
There are 4334 sequences of 2256 genera. Distance matrix 
was built by EMBOSS release 6.6 distmat utility (Rice et 
al. 2000) based on SILVA alignment using Kimura 2-
parameter model. Sequence AF110418.1.2904 was used as 
a query for SS and AST. 

The second is a collection of eukaryotic chitin synthases 
from our earlier work (Morozov, Likhoshway 2016). It 
includes 137 sequences that belong to 17 groups (a mixture 
of eukaryotic taxa and paralogous families). Distance 
matrix was built using Sampler (see Implementation). 
Sequence of Synedra acus Chs was used as a query for SS 
and AST. 

We have also tested three out of four methods on 
simulated datasets. AST was excluded from this analysis 
because simulated data do not have an associated 
taxonomy. 500 trees were generated, each consisting of a 
number of monophyletic clades. The number of clades was 
taken from a normal distribution with average 15 and 
standard deviation of 5. Number of sequences in each clade 
was taken from the normal distribution as well: the clade 
was either large (probability 20%; avg 100, stddev 20) or 
small (probability 80%; avg 2, stddev 1), but all clades 
were set to contain at least 1 sequence.  DNA sequences 
200 bp long were evolved along these trees using Pyvolve 
(Spielman and Wilke 2015) and sampled at rates from 0.1 
to 0.9 similarly to the SSU dataset. For SS, a random 
sequence was taken as a query. 

Calculations were performed on the HPC cluster of 
Irkutsk Scientific Center “Academician V.M.Matrosov” 
(https://hpc.icc.ru). 
3 Algorithm and Implementation 

Distant joining algorithm was named due to its slight 
similarity to Neighbor Joining (Saitou, Nei 1987). While 
the latter iteratively joins the closest pairs of sequences, DJ 
works by trying to find the sequence most different from 
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those already sampled on every step. It takes distance 
matrix and the amount of sequences to retain as an input, 
and initializes subsampling set by placing a single 
randomly chosen sequence into it. Then it adds the 
sequence with the highest distance to the first one to the 
subsampling set (ties are resolved at random). The third 
sequence is chosen so that it has the highest minimal 
distance to those already sampled, and so on until the 
sample reaches the necessary size. Python-style pseudocode 
is shown below. 

 
distance_matrix.read() 
return_size = input() 
in_set = distance_matrix.sequence_list() 
return_set = [] 
# Adding initial sequence to return_set 
return_set.append(in_set.pop(random.randint(len(in_set)))) 
for a in range(return_size): 

i = 0 
# Search for the most distant sequence 
for a in in_set: 

if distance_matrix.min_distance(a, return_set)>i: 
i = distance_matrix.min_distance(a, return_set) 
candidate = a 

in_set.remove(candidate) 
return_set.append(candidate) 

return return_set 
 
The algorithm was implemented as a Python 3.4 script. 

Current implementation is using EMBOSS needle for 
pairwise alignment and Scoredist distance estimator 
(Sonnhammer, Hollich 2005) for aminoacid sequences, if 
distance matrix is not supplied by the user. 
4 Results and Discussion 

Since the goal of our study was to develop the 
automated method that demonstrates decent performance in 
various complex cases, we have excluded manual selection 
and approaches that require preexisting data such as domain 
structure, GO annotation or guide trees. Four methods were 
compared: similarity sampling (SS), random sampling 
(RS), AST and DJ. They were evaluated on two drastically 
different real datasets: a collection of high-quality 
eukaryotic SSU sequences and the chitin synthase dataset 
from our previous work. We have also tested all methods 
except AST on simulated data. 

SSU dataset (Fig. 1a) is alarge collection of sequences 
with high similarity, but it is basically simple: no paralogs 
or HGT cases are present. As rRNA is one of the most 
common markers for phylogenetic, metagenomic and 
population genetics analyses, a plenty of high-quality full-
length sequences with reliable annotation are available from 
SILVA database. The only complication of the analysis is 
the fact that we have selected the  genera as clades of 
interest. There are, on average, less than two sequences per 
genus. 

On the other hand, the modern diversity of chitin 
synthases (Fig. 1b) has been formed by a complex 
collection of different evolutionary events. The tree 
topology is influenced by multiple gene losses and 
duplications, the latter sometimes accompanied by domain 
shuffling. At least two HGT events are known to have 
happened. There are 17 well-supported monophyletic gene 
groups of various nature: some of them are taxonomically 
consistent (e.g. all metazoan sequences form a single 
clade), while some others are not (Morozov, Likhoshway 
2015). For instance, fungal chitin synthases are divided into 
two major clades (which are further subdivided)  on the 

distant branches of the tree. However extant fungal 
genomes typically contain genes from most classes of chitin 
synthases. The complex topology of the tree is somewhat 
compensated by the fact that this dataset is not as dense as 
the SSU rRNA one. Clades contain 4-15 sequences, and 
between-clade divergenceis typically higher than within-
clade. 

 
Fig. 1 -- Percentage of clades retained by different 

methods. a) SSU, b) Chs 
5 Performance of various methods on real datasets 

Percentage of clades retained by all methods at sampling 
rates from 20 to 90 percent is shown at Fig. 1.  

Random choice performs best on chitin synthase dataset, 
but lags behind other methods on SSU. This difference is 
not surprising: the more sequences there are in the clade, 
the more likely at least one of them will be included in the 
reduced set. The opposite is also true: small clades tend to 
get missed by random sampling. When Chs dataset is 
analyzed, there is a plenty of sequences in every clade, so 
even at the lowest sampling rates most of the clades are 
retained. SSU dataset, on the other hand, requires some 
means of sampling about equal amount of sequences from 
both sequence-rich and sequence-poor genera. Random 
sampling cannot do that because it doesn't take sequences 
or taxa into account, retaining (best case) and increasing 
(worst case) a clade size imbalance, rather than correcting 
it. Clearly, the requirements of SSU case study are extreme, 
but real analyses (like RuBisCo example in the 
Introduction) may be complicated by similar factors. 

Another weakness of RS is its stochastic nature, which 
makes the results of subsampling unpredictable. Other 
methods, being deterministic, are guaranteed to retain all 
the clades if sampling rate is sufficient. It may or may not 
be achievable for a given dataset. However, if a 
determenistic approach is able to retain 100% of Chs clades 
at 70% sampling rate, it will reliably retain 100% clades at 
any rate higher than 70%. Random sampling reaches only 
about 99% performance on the same data (Fig. 1b) because 
there are replicates lacking several clades by pure chance. 

Large and relatively distant clades of chitin synthase tree 
have guaranteed acceptable results of random sampling, but 
had an opposite effect on SS. The clades closest to query 
sequence are preferentially populated, while the rest of the 
tree remains undersampled even at the higher sampling 
rates (Fig. S1). This is not an issue for rRNA dataset: 
genera are small and close to each other, so SS retains 
about as many genera as DJ. 

AST performs well on the rRNA dataset, because this is 
exactly the case it was designed for: a large annotated 
dataset where clades in question are taxa. In fact, it 
performs perfectly under lower sampling rates: there are as 
many genera in reduced sets as there are sequences. Chitin 
synthase dataset is  challenging for this method as 
taxonomy-based sampling is misleading when clades are 
not taxonomic, which is why AST stays behind both RS 
and DJ. 

Distant joining, on the other hand is performing 
perfectly on the chitin synthase dataset, sampling all clades 
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even at the lowest sampling rate. On rRNA dataset it is 
second to AST, outperforming random sampling and SS. 

 
Fig. 2. The percentage of clades sampled by SS (red), 
random sampling (black) and distant joining (blue) in 

simulated trees. 
6 Simulation results 

The simulated datasets were designed to consist of a few 
oversampled clades and a number of small clades. This 
difference between clade sizes simulates the case when 
some part of the underlying tree is heavily sequenced and 
the rest is almost ignored. For example, these could be 
model groups like mammals or flowering plants, and a 
multitide of planctonic eukaryotic groups.  

Unsurprisingly, in these settings similarity sampling 
showed the worst performance. Since a random query 
sequence most likely comes from one of the larger clades, 
its closest neighbours are also from this clade, while the rest 
of the tree remains undersampled. Random sampling also 
misses a lot of clades for the same reasons it did with the 
Chs dataset. A clade's chance to be sampled is directly 
proportional to its size, and small clades in the presence of 
larger ones tend to be missed.  

Distance Joining, on the other hand, appears to be the 
best method, particularly with the lower sampling rates. 
Like AST in the rRNA dataset, this is precisely the case it 
was designed for: distant unequally-sized clades without 
available metadata. It does not achieve perfect sampling 
due to the sequence divergence within the large clades, but 
it outperforms all other approaches. 
7 Conclusion 

Similarity sampling performs worst on all data, whether 
real or simulated. It should be noted again that this 
approach is not discussed here as a reasonable sampling 
approach. Rather, it's an artifact that can arise from taking 
closest hits after search in some large databases. If the 
query sequnce belongs to a non-model taxon or an obscure 
subfamily of some complex protein family, the issue may 
be less pronounced. In general, though, applying an e-value 
or score threshold and taking all hits above it is a safer 
approach. If necessary, this collection of hits could be 
reduced to a practical size by one of the other methods. 

The choice of sampling method for a particular pipeline 
should depend on underlying assumptions that can be made 
about the data. If it is safe to assume there is no conflict 
between gene trees and the species tree and no unclassified 
(or incorrectly annotated) sequences are going to be 
included in the initial dataset, AST is the best option. The 
implementation by Zhou et al. can only work with the 
sequences that have Genbank IDs and depends on the NCBI 
taxonomy files, but the algorithm itself can be adapted for 

general case that do not violate aforementioned 
assumptions. 

If it's guaranteed that no clades of interest are 
represented by a handful of sequences, random sampling 
may be viable as well. It being random, there is always 
potential risk of missing/underrepresenting clades. 
However, with high enough sampling percentage and large 
enough clades this risk is minimal. Importantly, the exact 
sampling rate which is necessary for a given dataset, can be 
found by solving “generalized coupon collector's problem 
without replacements” (Wild et al. 2012). Additionally, 
random sampling has the advantage of being quick, 
requiring little additional memory, and not depending on 
the availability of external data. 

If none of the assumptions above can be made, distant 
joining is the safest approach. The only assumption it 
depends upon is purely integrated in the context of 
phylogenetic approach: the similarity of sequences tend to 
be higher within a clade, rather than between clades. Thus, 
assuming adequately generated  distance matrix, DJ is 
designed  to sample from different branches of the 
underlying tree independently of its topology and relative 
size of clades of interest, regardlessof any external data. 

There are, though, two limitations to this method: first, 
the results will be only as good as the distance matrix they 
were built on. Second, the computational cost of DJ spans 
the order of minutes for hundreds of sequences on a typical 
desktop. It is higher than for other  methods discussed in 
this study. However, the time and computational 
requirements of the distance matrix construction, a most 
expensive step of DJ sampling, are still much less than 
those of the tree reconstruction. Thus, subsampling results 
in  smaller data matrix for downstream analyses, which is 
beneficial for reduction of runtime at alignment and 
phylogenetic tree reconstruction steps . The performance of 
DJ can be further optimized by using fast distance 
estimation methods, such as alignment-free k-mer based 
approaches. 
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