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ABSTRACT
In recent years, the surfaces of endemic Baikalian sponges have exhibited signs of damage and 
disease such as tissue bleaching, atypical microbial films, and necrotic areas. One of the most 
common sources of damage on branching sponges Lubomirskia baicalensis is a reddish-brown 
mucous film fully or partially covering the body of the sponge. Sequencing of the 16S rDNA gene 
revealed that the film on the surfaces of the sponge consists of Oscillatoriales cyanobacteria 
belonging to the following genera: Tychonema, Phormidium, and Leptolyngbya, with 44 of the 86 
identified sequences belonging to Tychonema. Cyanobacterial fouling of the Baikalian sponge may 
be caused by changes in environmental conditions of the sponge habitat, in particular, temperature 
increases and eutrophication of the lakes.

Introduction 

Water filtering organisms are bioindicators of the eco-
logical state of aquatic environments (Gadzała-Kopciuch 
et al. 2004, Volkmer-Ribeiro and de Souza Machado 
2007). Sponges (phylum Porifera) in particular are ses-
sile, filter-feeding, multicellular animals able to pump 
up to 24 000 L of water per 1 kg of body weight per day 
through a system of channels in their bodies (Taylor et 
al. 2007). Changes in environmental conditions such 
as anthropogenic pollution, temperature increase, and 
eutrophication can lead to diseases in sponges and sub-
sequent death (Webster et al. 2008a, 2008b, Lypez-Legentil 
et al. 2010). In Lake Baikal, the world’s largest freshwa-
ter reservoir, sponges inhabit all depths (Efremova 2004, 
Kaluzhnaya and Itskovich 2014). The largest biomass of 
Baikalian sponges is at the depth where the level of light 
penetration causes them to be the dominant organisms of 
benthic communities; here they have a green color due to 
the development of photosymbiotic microorganisms in 
their tissues (Kozhov 1962, Pile et al. 1997, Kulikova et al. 
2013). Of the 18 species of sponges that live in the lake, 14 
are endemic (Efremova 2004), and Lubomirskia baicalensis 
is the only species with cylindrical “branches” that allow 
some specimens of L. baicalensis to reach a length of 1 m 
(Rezvoi 1936).

In recent years, it has been observed that multiple areas 
of the lake with numerous exemplars of L. baicalensis have 

included sponges with tissue damage (bleaching, micro-
bial fouling, and necrotic areas), leading eventually to 
the necrosis of the individual “branches” or death of the 
whole organism. Various studies of marine sponges and 
corals have shown that changes in environmental condi-
tions affect the composition of their symbiotic microflora 
and lead to diseases and tissue damage (Webster et al. 
2008a, 2008b, Lypez-Legentil et al. 2010). In our recent 
study of the microbial composition of bleached tissue 
of L. baicalensis (Kaluzhnaya and Itskovich 2015), we 
also showed an increase in the number of cyanobacte-
rial 16S rDNA sequences and an unusually low num-
ber of representatives of the phyla Bacteroidetes and 
Betaproteobacteria. Furthermore, some bacterial phy-
lotypes related to microorganisms specific to substrates 
with a high content of organic compounds and heavy 
metals were detected in the microbiome (Kaluzhnaya and 
Itskovich 2015).

One of the most common signs of damage on Baikalian 
sponges is a reddish-brown mucous or brown film that 
partially or completely fouls the branches of L. baicalensis 
(Fig. 1). The aim of this study was to use molecular meth-
ods (16S rDNA sequencing) to determine the taxonomic 
affiliation of the microorganisms that overgrow the sponge 
and form mucous films and to explore whether this con-
tributes to the damage of death of the endemic sponges 
in Lake Baikal.
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were cloned into the vector pTZ57A/T (Fermentas), fol-
lowed by transformation of chemically competent cells 
of Escherichia coli XL1BL. In total, 108 clones were PCR 
amplified from 16S rDNA clone library using M13 prim-
ers (Eurogen) following the cycling conditions: initial 
activation of Taq-DNA-polymerase for 5 min at 94 °C, 
followed by 35 cycles of 30 s denaturation at 94 °C, primer 
annealing for 60 s at 58 °C, and elongation for 60 s at 72 °C. 
Determination of nucleotide sequences of the 86 recombi-
nant clones that were PCR positive was carried out on an 
automatic ABI sequencer 3130XL (Applied Biosystems). 
Sequences were aligned and percentages of their identity 
were defined using ClustalW software module of BioEdit 
7.0 package. These sequences were compared to those 
published in genetic databases using the BlastN program. 
The nucleotide sequences were deposited in GenBank 
with the accession numbers: KU168738–KU168741.

Results

BlastN-analysis of 16S rDNA sequences showed that 
the composition of the mucous biofilm overgrowing the 
branching sponge L. baicalensis contained filamentous 
cyanobacteria (order Oscillatoriales) belonging to the 
genera Tychonema, Phormidium, and Leptolyngbya. Of 
the 86 sequences analyzed, 44 were similar to each other 
by more than 97%, and the consensus sequence showed 
a high identity to the species of the genus Tychonema: 

Methods

Sponge tissue samples of L. baicalensis (IK605) cov-
ered with mucous film were collected at 10 m depth by 
SCUBA divers during expedition work in September 2014, 
in the area of Olkhon Island (west coast of Lake Baikal; 
053°00.962N, 106°55.788W).

Light microscopy was performed using a microscope 
Olympus CX22 (Japan). Microscopic analysis suggested 
all samples contained similar cyanobacteria, and one sam-
ple was selected for molecular characterization. Fouling 
biofilms were separated from sponge tissue using a sterile 
scalpel and gloves, placed in liquid nitrogen in cryogenic 
microtubes, and stored at −70 °C. The total DNA from the 
selected representative was isolated using the kit RiboSorb 
(Russia). For the molecular identification of microorgan-
isms from the mucous biofilm, a partial region of the 16S 
rDNA gene (V2–V8) was amplified using cyanobacte-
ria-specific primers: 

PLG1.1 (109-128): 5-ACGGGTGAGTAACGCGTRA-3

PLG2.1 (1260-1282): 5-CTTATGCAGGCGAGTTGC- 
AGC-3 (Urbach et al. 1992).

The polymerase chain reaction (PCR) conditions were 
as follows: initial activation of Taq-DNA-polymerase for 5 
min at 94 °C, followed by 35 cycles of 30 s denaturation at 
94 °C, primer annealing for 60 s at 56 °C, and elongation 
for 90 s at 72 °C. The program ended with 10 min of final 
elongation at 72 °C. The amplification products (~1200 bp) 

Figure 1.  Cyanobacterial films on the surface of the endemic sponge Lubomirskia baicalensis: (a and b) underwater pictures of branching 
sponges, partially affected by fouling; (c) mucous film on the surface of the L. baicalensis, sample IK605; (d and e) microphotograph of 
filamentous cyanobacteria, forming mucous film.
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T. bornetii, T. bourrellyi, and T. sp. K27 from biofilms of 
European and Antarctic water reservoirs (Table 1). The 
sequences of 19 clones were united in one phylotype 
with 97% to 99% similarity to the cyanobacterial strains 
Leptolyngbya sp.; 22 clones were closely related to species 
of the genus Phormidium and formed 2 phylotypes, one of 
which showed 96% identity to the uncultivated clone P. sp. 
MED-28 from microbial mats of a freshwater stream. The 
other phylotype had 98% similarity to the cyanobacterial 
clone of Antarctic microbial mats and the Antarctic strain 
P. autumnale CYN79 (97%; Table 1; Martineau et al. 2013).

Discussion

The cyanobacterial order Oscillatoriales includes filamen-
tous genera that can form biofilms or mats (Jungblut et al. 
2010, Loza et al. 2013). Species of the genera Phormidium 
and Leptolyngbya are widespread in various marine and 
freshwater ecosystems, including lakes (Marquardt and 
Palinska 2007, Stoyanov et al. 2014). Representatives of 
the genus Tychonema are stenothermal psychrophilic 
microorganisms that mainly inhabit the northern lati-
tudes (Shams et al. 2015), so the presence of this genus 
in the Siberian oligotrophic reservoir (Lake Baikal) is 
natural. Note that, based on the number of 16S rDNA 
sequences, the Tychonema species are dominant (about 
50% of the analyzed clones) in the fouling cyanobacterial 
community of L. baicalensis. Previously, multiple popu-
lations of T. bourrellyi were observed in aquatic commu-
nities in Northern Europe and Canada, South Norway, 
and Northern Ireland, as well as in Western Europe 
(Marquardt and Palinska 2007, Stoyanov et al. 2014). The 
dominance of Tychonema species in cyanobacterial mats 

in the creeks on the coast of Antarctica was shown in 
Callejas et al. (2011). The authors found that 83% of the 
16S rDNA clones in the investigated community belonged 
to Tychonema (T. bourrellyi and T. bornetii). In addition, 
some species of the genus Tychonema are capable of pro-
ducing the neurotoxin anatoxin-a (Lypez-Legentil et al. 
2010, Quiblier et al. 2013).

Intensive development of cyanobacterial mats has long 
been a threat to coral reef communities. In geographically 
distant areas of the world’s oceans, filamentous cyano-
bacteria form slimy mats on the surface of marine corals. 
The cyanobacterial mats of various species of coral are 
dominated by representatives of a wide range of genera 
such as Hydrocoleum, Spirulina, Symploca, Phormidium, 
Nodularia, Lyngbya, Microcoleus, and Oscillatoria (Charpy 
et al. 2012). Note that one of the common diseases of 
corals caused by cyanobacterial fouling is “black band 
disease,” in which the laminated microbial mats migrate 
horizontally on the surface of the coral and completely 
destroy its tissues (Sato et al. 2010). Filamentous cyano-
bacteria are dominant in the composition of such lami-
nated films as well as in mucous films of Baikal sponges. 
They are also notably present on the coral reefs of the 
Hawaiian Islands as the species Phormidium corallyticum 
and Pseudoscillatoria coralii (Aeby et al. 2015) and on the 
reefs near the island of Okinawa (Japan) as Moorea bouil-
lonii (Yamashiro et al. 2014).

Global climate change and other anthropogenic 
impacts close to coral reef communities can promote 
mass coral fouling by cyanobacterial proliferations. 
Development of cyanobacterial mats can be stimulated 
by an increase in annual solar radiation, average tem-
perature, and concentration of phosphates, nitrates, and 
nitrites in the water (Charpy et al. 2012, Brocke et al. 2015, 
Sato et al. 2015). Researchers have noted that increased 
anthropogenic nutrient loading (from the development 
of industrial enterprises, agricultural lands, and tourist 
infrastructure) leads to eutrophication of the coral reef 
habitat. Additionally, organic matter from the urban areas 
is transported by surface runoff and settles in areas with 
low hydrodynamics. This organic matter can decompose 
and increase levels of nitrogen and phosphorus, further 
stimulating the development of cyanobacterial mats. For 
example, on the coast of Australia, proliferation of ben-
thic cyanobacteria Lyngbya majuscule in reef communities 
was preceded by rain showers and a period of high solar 
radiation.

Based on the research of coral reef communities, it can 
be assumed that the formation of cyanobacterial biofilms 
on surfaces of branched Baikalian sponges was caused 
by similar changes in habitat. Because branching sponges 
most actively develop at shallow depths (upper littoral 
zone) and are exposed to climatic and anthropogenic 

Table 1.  Taxonomic identification of cyanobacteria fouling the 
surface of L. baicalensis, based on the BlastN comparison of the 
16S rDNA gene sequences obtained from the National Center for 
Biotechnology Information (NCBI).

Consensus 
sequences

NCBI 
accession 
number

Closest homologues with NCBI 
accession number Identity

01T_LB KU168738 Tychonema sp. K27 (GQ324965) 99%
(n = 44) Tychonema bornetii NIVA-CYA 

(LM651414);
99%

Tychonema bourrellyi NIVA-CYA 
96/3 (LM651417) 

99%

02L_LB KU168739 Leptolyngbya sp. ATA11-WF-KO3 
(KJ939030)

99%
(n = 19)

Leptolyngbya sp. SAG 2411 
(KF417652)

97%

03P1_LB KU168740 Uncultured Phormidium sp. MED-
28 (JN382236)

96%
(n = 14)
04P2_LB KU168741 Uncultured Antarctic cyanobacte-

rium Fr048 (AY151726)
98%

(n = 8)
Phormidium autumnale CYN79 
(JQ687337)

97%

Phormidium cf. uncinatum CAW-
BG523 (JX088098)

97%
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development of cyanobacterial biofilms and “black band 
disease” lead to the destruction of coral tissues and coral 
death. The mucous films on the surface of Baikalian sponges, 
together with diseases, are evidence of adverse ecological 
conditions prevailing in some areas of the lake, most likely 
due to the combined effect of climatic and anthropogenic 
effects on the ecosystem of Lake Baikal. Further research 
is needed to clarify the causes of Baikalian sponge diseases 
and relate these processes to climate dynamics and envi-
ronmental conditions in the Baikal region.
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